具有分数Brown运动的分数阶中立型随机微分方程解的存在唯一性

浏览次数:10
  • 分享到:

摘要:

研究了一类在Hilbert空间中具有分数Brown运动的分数阶中立型随机微分方程,利用Picard逐步逼近法得到了其非Lipschitz条件和弱化的线性增长条件下粘性解的新的存在唯一性的充分条件。所提的研究方法使得先前一些研究结果得到了拓展。最后通过具有分数Brown运动的随机非线性波动方程验证了理论的有效性。

In this paper, we consider a class of fractional-order neutral stochastic differential equations with fractional Brownian motion by using picard step by step in a Hilbert space. A novel sufficient condition for the existence and uniqueness of mild solutions is obtained in conditions of the non-Lipschitz condition and the weakened linear growth. The result generalizes a few prevlous known results, An application to the stochastic nonlinear wave equation with fractional Brownian motion is given to illustrate the validity of the obtained theory.

fractional stochastic differential equations; fractional Brownian motion ; mild solution; existence and uniqueness

作者:

李国平,韩婷

Li Guoping,Han Ting

机构地区:

宁夏大学新华学院;宁夏大学数学统计学院 

引用本文:

李国平,韩婷。具有分数Brown运动的分数阶中立型随机微分方程解的存在唯一性[J] . 学报(自然科学版) ,2025,53(3) :104-111. (Li Guoping, Han Ting. Existence and uniqueness of solutions to fractional neutral stochastic differential equations  with  fractional  brownian  motion [J] .Journal of  Henan  Normal University(Natural Science Edition) ,2025,53(3) :104-111. DOI:10. 16366/j. cnki.1000-2367. 2023. 09. 20. 0001. )

基金:

宁夏高等学校科学研究项目;国家自然科学基金

关键词:

分数阶随机微分方程;分数Brown运动;粘性解;存在唯一性

gas-liquid two-phase flow; Hiorth parameters; hybrid neural network; random forest

分类号:

O175. 14  


具有分数Brown运动的分数阶中立型随机微分方程解的存在唯一性.pdf

Baidu
map